Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina.
نویسندگان
چکیده
Transgenic technology, immunocytochemistry, electrophysiology, intracellular injection techniques, and reverse transcription PCR were combined to study the expression of neuronal connexin36 (Cx36) in the outer plexiform layer of the mouse retina. Transgenic animals expressed either a fusion protein of full-length Cx36 with enhanced green fluorescent protein (EGFP) attached at the C terminus or exon 2 of Cx36 was replaced bybeta-galactosidase (beta-gal). In the outer nuclear layer,beta-gal-positive cell bodies, which were confined to the most distal region close to the outer limiting membrane, displayed immunoreactivity against S-cone opsin. Cx36-EGFP puncta colocalized with cone pedicles, which were visualized by intracellular injection. In reverse transcriptase PCR experiments, Cx36 mRNA was never detected in samples of rods harvested from the outer nuclear layer. These results strongly suggest expression of Cx36 in cones but not in rods. In vertical sections, Cx36 expression in the vitreal part of the outer plexiform layer was characterized by a patchy distribution. Immunocytochemistry with antibodies against the neurokinin-3 receptor and the potassium channel HCN4 (hyperpolarization-activated cyclic nucleotide-gated potassium channel) displayed clusters of the Cx36 label on the dendrites of OFF-cone bipolar cells. In horizontal sections, these clusters of Cx36 appeared as round or oval-shaped groups of individual puncta, and they were always aligned with the base of cone pedicles. Double-labeling experiments and single-cell reverse transcriptase PCR ruled out expression of Cx36 in horizontal cells and rod bipolar cells. At light microscopic resolution, we found close association of Cx36-EGFP with the AMPA-type glutamate receptor subunit GluR1 but not with GluR2-GluR4, the kainate receptor subunit GluR5, or the metabotropic glutamate receptor mGluR6.
منابع مشابه
Expression of neuronal connexin36 in AII amacrine cells of the mammalian retina.
We have studied the expression pattern of neuronal connexin36 (Cx36) in the mouse and rat retina. In vertical sections of both retinas, a polyclonal antibody directed against Cx36 produced punctate labeling in the inner plexiform layer (IPL). Intense immunoreactivity was localized to the entire OFF sublamina of the IPL, and much weaker staining could be observed in the ON sublamina. Double-labe...
متن کاملThe synaptic architecture of AMPA receptors at the cone pedicle of the primate retina.
Cone pedicles, the output synapses of cone photoreceptors, transfer the light signal onto the dendrites of bipolar and horizontal cells. Cone pedicles contain between 20 and 45 ribbon synapses (triads) which are the release sites for glutamate, the cone transmitter. Several hundred postsynaptic dendrites contact individual cone pedicles, and we studied the glutamate receptors expressed and clus...
متن کاملThe primordial, blue-cone color system of the mouse retina.
Humans and old world primates have trichromatic color vision based on three spectral types of cone [long-wavelength (L-), middle-wavelength (M-), and short-wavelength (S-) cones]. All other placental mammals are dichromats, and their color vision depends on the comparison of L- and S-cone signals; however, their cone-selective retinal circuitry is still unknown. Here, we identified the S-cone-s...
متن کاملHomotypic regulation of neuronal morphology and connectivity in the mouse retina.
The establishment of neuronal circuitry during development relies upon the action of cell-intrinsic mechanisms that specify neuronal form as well as plastic processes that require the transmission of neural activity between afferents and their targets. Here, we examine the role of interactions between neighboring like-type cells within the mouse retina upon neuronal differentiation and circuit ...
متن کاملMorphologic identification of the OFF-type blue cone bipolar cell in the rabbit retina.
PURPOSE Bipolar cells play major roles in transmitting visual signals from photoreceptors to ganglion cells and can be subdivided into at least 10 to 13 distinct types based on their morphology and physiology. This study aimed to morphologically identify the blue cone bipolar cells responsible for transmitting color signals in the rabbit retina. METHODS To find this cell type, bipolar cells w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 13 شماره
صفحات -
تاریخ انتشار 2004